
Prerequisite Knowledge 1

Prerequisite Knowledge
xv6 Basic Introduction
The operating system, xv6, provides the basic interfaces introduced by Ken
Thompson and Dennis Ritchie’s Unix operating system, as well as mimicking
Unix’s internal design. Unix provides a narrow interface whose mechanisms
combine well, offering a surprising degree of generality. This interface has been
so successful that modern operating systems—BSD, Linux, macOS, Solaris, and
even, to a lesser extent, Microsoft Windows—have Unix-like interfaces.
Understanding xv6 is a good start toward understanding any of these systems
and many others.

As Figure 1.1 shows, xv6 takes the traditional form of a kernel, a special program
that provides services to running programs. Each running program, called a
process, has memory containing instructions, data, and a stack. The instructions
implement the program’s computation. The data are the variables on which the
computation acts. The stack organizes the program’s procedure calls. A given
computer typically has many processes but only a single kernel.

When a process needs to invoke a kernel service, it invokes a system call, one of
the calls in the operating system’s interface. The system call enters the kernel; the

Prerequisite Knowledge 2

kernel performs the service and returns. Thus, a process alternates between
executing in user space and kernel space. The kernel uses the hardware
protection mechanisms provided by a CPU to ensure that each process executing
in user space can access only its own memory.

The collection of system calls that a kernel provides is the interface that user
programs see. The xv6 kernel provides a subset of the services and system calls
that Unix kernels traditionally offer. Figure 1.2 lists all of xv6’s system calls.

The Unix system call interface has been standardized through the Portable
Operating System Interface (POSIX) standard. Xv6 is not POSIX compliant: it is
missing many system calls (including basic ones such as lseek), and many of the
system calls it does provide differ from the standard. Our main goals for xv6 are
simplicity and clarity while providing a simple UNIX-like system-call interface.
Several people have extended xv6 with a few more system calls and a simple C
library in order to run basic Unix programs. Modern kernels, however, provide

Prerequisite Knowledge 3

many more system calls, and many more kinds of kernel services, than xv6. For
example, they support networking, windowing systems, user-level threads, drivers
for many devices, and so on. Modern kernels evolve continuously and rapidly, and
offer many features beyond POSIX.

File Descriptor
A file descriptor is a small integer representing a kernel-managed object that a
process may read from or write to. A process may obtain a file descriptor by
opening a file, directory, or device, or by creating a pipe, or by duplicating an
existing descriptor. For simplicity, we’ll often refer to the object a file descriptor
refers to as a “file”; the file descriptor interface abstracts away the differences
between files, pipes, and devices, making them all look like streams of bytes.

Internally, the xv6 kernel uses the file descriptor as an index into a per-process
table, so that every process has a private space of file descriptors starting at zero.

The read and write system calls read bytes from and write bytes to open files
named by file descriptors. The call read(fd, buf, n) reads at most n bytes from the
file descriptor fd , copies them into buf , and returns the number of bytes read.
Each file descriptor that refers to a file has an offset associated with it. read reads
data from the current file offset and then advances that offset by the number of
bytes read: a subsequent read will return the bytes following the ones returned by
the first read . When there are no more bytes to read, read returns zero to indicate
the end of the file.

The call write(fd, buf, n) writes n bytes from buf to the file descriptor fd and
returns the number of bytes written. Fewer than n bytes are written only when an
error occurs. Like read , write writes data at the current file offset and then
advances that offset by the number of bytes written: each write picks up where
the previous one left off.

The close system call releases a file descriptor, making it free for reuse by a
future open , pipe , or dup system call (see below). A newly allocated file descriptor
is always the lowest-numbered unused descriptor of the current process.

The dup system call duplicates an existing file descriptor, returning a new one that
refers to the same underlying file object. Both file descriptors share an offset, just

Prerequisite Knowledge 4

as the file descriptors duplicated by fork do. This is another way to write hello
world into a file:

 fd = dup(1);

 write(1, "hello ", 6);

 write(fd, "world\n", 6);

File
A file’s name is distinct from the file itself; the same underlying file, called an
inode, can have multiple names, called links. An inode holds metadata about a
file, including its type (file or directory or device), its length, the location of the
file’s content on disk, and the number of links to a file. It is noticeable that
Unix/Linux system does not identify the file’s name. Instead, the system uses
inode to recognize the file.

Page Tables
Page tables are the most popular mechanism through which the operating system
provides each process with its own private address space and memory. Page
tables determine what memory addresses mean, and what parts of physical
memory can be accessed. They allow xv6 to isolate different process’s address
spaces and to multiplex them onto a single physical memory.

As a reminder, RISC-V instructions (both user and kernel) manipulate virtual
addresses. The ma- chine’s RAM, or physical memory, is indexed with physical
addresses. The RISC-V page table hardware connects these two kinds of
addresses, by mapping each virtual address to a physical address.

Xv6 runs on Sv39 RISC-V, which means that only the bottom 39 bits of a 64-bit
virtual address are used; the top 25 bits are not used. In this Sv39 configuration, a
RISC-V page table is logically an array of ﻿ (134,217,728) page table entries
(PTEs). Each PTE contains a 44-bit physical page number (PPN) and some flags.
The paging hardware translates a virtual address by using the top 27 bits of the 39
bits to index into the page table to find a PTE, and making a 56-bit physical
address whose top 44 bits come from the PPN in the PTE and whose bottom 12

227

Prerequisite Knowledge 5

bits are copied from the original virtual address. A page table gives the operating
system control over virtual-to physical address translations at the granularity of
aligned chunks of 4096 (﻿) bytes. Such a chunk is called a page.

In Sv39 RISC-V, the top 25 bits of a virtual address are not used for translation.
﻿ bytes is 512 GB, which should be enough address space for applications

212

239

Prerequisite Knowledge 6

running on RISC-V computers. As Figure 3.2 shows, a RISC-V CPU translates a
virtual address into a physical in three steps. A page table is stored in physical
memory as a three-level tree. The root of the tree is a 4096-byte page table page
that contains 512 PTEs, which contain the physical addresses for page-table
pages in the next level of the tree. Each of those pages contains 512 PTEs for the
final level in the tree. The paging hardware uses the top 9 bits of the 27 bits to
select a PTE in the root page-table page, the middle 9 bits to select a PTE in a
page-table page in the next level of the tree, and the bottom 9 bits to select the
final PTE.

If any of the three PTEs required to translate an address is not present, the paging
hardware raises a pagefault exception, leaving it up to the kernel to handle the
exception.

Each PTE contains flag bits that tell the paging hardware how the associated
virtual address is allowed to be used. PTE_V indicates whether the PTE is present:
if it is not set, a reference to the page causes an exception (i.e., is not allowed).
PTE_R controls whether instructions are allowed to read to the page. PTE_W controls
whether instructions are allowed to write to the page. PTE_X controls whether the
CPU may interpret the content of the page as instructions and execute them.
PTE_U controls whether instructions in user mode are allowed to access the page;
if PTE_U is not set, the PTE can be used only in supervisor mode.

A few notes about terms. Physical memory refers to storage cells in DRAM. A byte
of physical memory has an address, called a physical address. Instructions use
only virtual addresses, which the paging hardware translates to physical
addresses, and then sends to the DRAM hardware to read or write storage. Unlike
physical memory and virtual addresses, virtual memory isn’t a physical object, but
refers to the collection of abstractions and mechanisms the kernel provides to
manage physical memory and virtual addresses.

A Brief Preview about the Project 3
You are expected to implement the mmap and munmap system calls in the xv6 kernel.

The mmap and munmap system calls allow UNIX programs to exert detailed control
over their address spaces. They can be used to share memory among processes,

Prerequisite Knowledge 7

to map files into process address spaces, and as part of user-level page fault
schemes such as the garbage-collection algorithms discussed in lecture. In this
lab you'll add mmap and munmap to xv6, focusing on memory-mapped files.

void *mmap(void *addr, size_t length, int prot, int flags,

 int fd, off_t offset);

mmap can be called in many ways, but this lab requires only a subset of its features
relevant to memory-mapping a file. You can assume that addr will always be zero,
meaning that the kernel should decide the virtual address at which to map the
file. mmap returns that address, or 0xffffffffffffffff (i.e. -1) if it fails. length is the
number of bytes to map; it might not be the same as the file's
length. prot indicates whether the memory should be mapped readable,
writeable, and/or executable; you can assume
that prot is PROT_READ or PROT_WRITE or both. flags will be either MAP_SHARED , meaning
that modifications to the mapped memory should be written back to the file,
or MAP_PRIVATE , meaning that they should not. You don't have to implement any
other bits in flags. fd is the open file descriptor of the file to map. It's OK if
processes that map the same MAP_SHARED file do not share physical pages.

munmap(addr, length) should remove mmap mappings in the indicated address
range. If the process has modified the memory and has it mapped MAP_SHARED , the
modifications should first be written to the file. An munmap call might cover only a
portion of an mmap-ed region, but you can assume that it will either unmap at the
start, or at the end, or the whole region (but not punch a hole in the middle of a
region).

